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Work related activities that led to overexertion are a major cause of work-related 
musculoskeletal disorders (WMSDs) among construction workers. However, existing risk 
assessment methods (e.g., self-reported and observational-based methods) have failed 
to fully recognize these activities and assess the corresponding risk level exposure to 
mitigate WMSDs. This study examines the feasibility of using acceleration and foot 
plantar pressure distribution data captured by a wearable insole pressure system for 
automated assessment of construction workers’ activities and overexertion risk levels. 
The accuracy of five types of supervised machine learning classifiers was evaluated with 
different window sizes to investigate individual participant performance and further 
estimate physical intensity, activity duration and frequency information. The results 
showed that the Random Forest classifier with 2.56s window size achieved the best 
classification accuracy of 94.5% and 94.3% and a sensitivity of more than 90.1% and 
88.4% for each category of activities. Overall, the proposed approach provides a non-
invasive method and objective assessment of ergonomic risk level based on 
acceleration and foot plantar pressure distribution data captured by a wearable insole 
pressure system which could help other researchers and safety managers to: understand 
the level of workers’ risks; and provide an effective intervention to mitigate the risk of 
developing WMSDs among construction workers. 
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INTRODUCTION 

Work-related musculoskeletal disorders (WMSDs) are a leading cause of nonfatal 
occupational injuries within the construction industry (Eaves et al., 2016). In the 
United States, WMSDs account for 32% of all injuries and illness cases that result 
in absenteeism throughout industry (Bureau of Labor Statistics, 2015). WMSDs (e.g., 
low back pain) impose substantial direct and indirect costs, schedule delays and 
lost time claims to the industry (Umer et al., 2017a). To prevent WMSDs, the 
potential risk factors must be identified in order to provide practical interventions 
to mitigate the risk. Among the various biomechanical risk factors (e.g., awkward 
postures, overexertion, repetitive motions), overexertion (i.e., force exertion) has 
been identified as the leading cause of WMSDs among construction workers (BLS, 
2016).  

Previous studies have successfully demonstrated the use of wearable inertial 
measurement units (IMUs) for activity recognition and risk assessment (Akhavian 
and Behzadan, 2016; Nath et al., 2018; Ryu et al., 2018). For instance, Ryu et al. 
(2018) examined the feasibility of the wrist-worn accelerometer-embedded activity 
tracker for automated action recognition of four different subtasks of masonry 
works. Despite the inherent advantages of wearable IMU-based systems, these 
approaches are intrusive and require multiple sensors to be attached to a 
construction worker’s body. Consequently, they are often uncomfortable to wear 
and/or instigate epidermal irritation. In addition, little research has been conducted 
to automatically recognize overexertion-related work activities and evaluate the 
amount of physical intensity (i.e., grip effort), activity duration and frequency 
information. Against this contextual backdrop, this paper proposes a non-invasive 
wearable insole pressure system for recognizing overexertion-related work 
activities and assessing ergonomic risk levels. 

LITERATURE REVIEW 

There are four thematic groupings of ergonomic risk assessment methods for 
identifying the development of WMSDs, namely: i) self-reported methods; ii) 
observational-based methods; iii) vision-based methods; and iv) direct 
measurement methods. Self-reported methods are relatively straightforward to 
implement and have an initial low cost as workers are asked to provide self-
assessment risk-related data. However, researchers have stated that workers’ self-
assessments on exposure levels are often imprecise, unreliable and biased (Wang 
et al., 2015a). Observation-based methods involve real-time assessment or analysis 
of recorded video footage. However, these methods are mostly impractical due to 
the substantial cost, time and technical knowledge required for post-analysis of 
large amounts of non-heterogeneous data (David, 2005). Vision-based methods 
use depth sensors or stereo camera systems to capture human motion data (Han 
et al., 2013; Han and Lee, 2013). These methods provide accurate, non-invasive and 
automated human motion data for analyzing workers’ safety behaviors or unsafe 
actions (Han et al., 2013). Despite the advancements in automation, these methods 
still require a direct line of sight to register human movements (Han and Lee, 2013). 
Direct measurement methods use wearable sensor-based systems to collect 
human motion-related data and provide accurate and reliable data for identifying 
WMSDs’ risks (David, 2005; Akhavian and Behzadan, 2016; Antwi-Afari et al., 2017b; 
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Antwi-Afari et al., 2018a). Akhavian and Behzadan (2016) used a smartphone with 
embedded accelerometer and gyroscope sensors to capture body movement data 
to classify different categories of construction activities. However, these methods 
require sensors to be attached to the workers’ skin which may cause irritation and 
discomfort (Antwi-Afari et al., 2017b). To overcome the aformentioned challenges, 
this study proposes a wearable insole pressure system to recognize overexertion-
related construction worker activities and assessing corresponding ergonomic risk 
levels.  

RESEARCH METHODS 

Fig. 1 shows the schematich framework for overexertion-related ergonomic risk 
assessment. The detailed description of each step is provided in the following 
sections. 

 
Fig. 1. Schematic framework for overexertion-related ergonomic risk assessment 

Participants 
Two asymptomatic male participants were recruited from the student population 
of the Hong Kong Polytechnic University. The participants mean age, weight, and 
height were 27.6 ± 3.01 years, 72 ± 3.75 kg, and 1.65 ± 0.17 m, respectively. Both 
participants had no medical history of mechanical upper extremities or back pains, 
or lower extremity injuries. Participants provided their informed consent in 
accordance with the procedure approved by the Human Subject Ethics 
Subcommittee of The Hong Kong Polytechnic University (reference number: 
HSEARS20170605001). 

Experimental procedure and data collection 
An OpenGo system (Moticon GmbH, Munich, Germany) that contained 13 
capacitive pressure sensors within each pair of a wearable insole was used for 
measuring acceleration and foot plantar pressure distribution data (cf. Antwi-Afari 
and Li 2018g). A cross-sectional study design was adopted during a single visit. All 
participants were asked to wear personal protective equipment such as a pair of 
safety boots and a hard hat during the testing sessions. The participants were 
shown representative videos of overexertion-related construction workers’ 
activities which were performed by workers on site. Participants then performed 
the following seven overexertion-related construction workers’ activities viz: (i) 
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load a wooden box (measuring 30 × 30 × 25 cm) with dumbbell weights and hold 
it in a static standing position to receive further instruction from the experimenter; 
(ii) walk while carrying the weighted box along a set path to a preset destination 
on the floor; (iii) lift the weighted box from the floor level onto a table at waist level 
for inspection; (iv) lower the weighted box from the table at waist level onto a four-
wheeled dolly; (v) walk while pushing the dolly on a set path to another preset 
destination; (vi) wait while the experimenter offload the dumbbell weights from the 
wooden box; and (vii) walk while pulling the dolly to a specific preset location in 
the laboratory. The entire experiment was conducted for 20 cycles for two 
participants. It was recorded using a video camcorder in a laboratory setting. These 
activities were grouped into four different categories of activities, namely (cf. Jaffar 
et al., 2011): (1) category-1-activities: grip force; (2) category-2-activities: 
lift/lower/carry; (3) category-3-activities: push/pull; and (4) category-4-activities: 
any other non-risk activity. In addition, these activity categories can be assessed by 
three different sets of rules that limit the physical intensity, activity duration and 
frequency information (as summarized in Table 1) that can lead to developing 
WMSDs (OSHA, 2012). 

Data segmentation 
The sliding window technique was used to divide the collected data into smaller 
data segments; where the sampling frequency per second was set at 50 Hz (Banos 
et al., 2014). The window sizes of 0.32s, 0.64s, 1.28s and 2.56s were used because 
the conversion of the time domain to frequency domain using fast Fourier 
transforms (FFT) in MATLAB 9.2 software (Matlab, The MathWorks Inc., MA, USA) 
required the window size to be a power of 2 (Akhavian and Behzadan, 2016). A 50% 
overlap of the adjacent windows was considered in this research (Antwi-Afari et al., 
2018f). 

Feature extraction 
Three groups of features were extracted in this study, namely: (1) time-domain 
features such as mean, variance, maximum, minimum, range, standard deviation, 
root mean square, kurtosis, skewness, standard deviation magnitude, sum vector 
magnitude and signal magnitude area; (2) frequency-domain features such as 
spectral energy and entropy spectrum; and (3) spatiotemporal features such as 
pressure-time integral, anterior/posterior centre of pressure and medial/lateral 
centre of pressure. Overall, previous studies indicated better classification 
performance from these groups of features in human activity recognition (Antwi-
Afari et al., 2018f; Ryu et al., 2018). 

Reference data 
A class label for each of the four categories of activity was assigned to each window 
size with the assistance of the video data to serve as the ground truth to evaluate 
the performance of the classifiers (Antwi-Afari et al., 2018e). 

Classifier training 
Five different types of supervised machine learning classifiers were examined, 
namely: (1) Artificial Neural Network (ANN); (2) Decision Tree (DT); (3) Random 
Forest (RF); (4) K-Nearest Neighbor (KNN); and (5) Support Vector Machine (SVM). 
All data processing of the classifiers were performed using Toolbox in MATLAB 9.2 
software. 
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Model assessment 
The performance of the classifiers (i.e., accuracy and sensitivity) was assessed by 
the stratified 10-fold cross-validation method (cf. Attal et al., 2015).   

Activity recognition 
Once the model was trained, and its parameters are finalized, it can be used for 
recognizing activities for which it has been trained. The overexertion-related 
workers’ activities involved in this study can be allocated into four categories of 
activities that may lead to developing WMSDs among construction workers.  

Estimation of physical intensity, activity duration and frequency  
The physical intensity was calculated by subtracting the participant’s self-weight 
from the total ground reaction force (Yu et al., 2018). The activity duration of each 
instance was calculated by counting the number of windows in that category and 
multiplying the result by half of the window size (Nath et al., 2018). The total 
duration of a category was evaluated by summing the durations of all instances of 
that category. Lastly, the frequency was determined by counting all the instances 
of that category (Simoneau et al., 1996).  

Overexertion-related ergonomic risk assessment 
Table 1 presents the ergonomic risk levels (low, moderate and high) that can be 
used to estimate the physical intensity, activity duration and frequency information 
of each category of activity (OSHA, 2012). To estimate for the corresponding 
ergonomic risk levels - physical intensity, activity duration and frequency were 
expressed as weight of the object (kg), percentages of the work shift and frequency 
per minute of the shift. In this study, a shift is the total duration of the experiment.  

Table 1. Ergonomic risk levels of categories of activities 

 

RESULTS AND DISCUSSION 

The classification performance of the proposed approach was based on an 
individualized participant evaluation. Table 2 illustrates the classification accuracy 
using individualized data of each participant. The highest accuracies of participant 
I and participant II (based on the RF classifier at 2.56s window size) were 94.5% and 
94.3%, respectively. The best accuracy achieved from the RF classifier demonstrates 
that both acceleration and foot plantar pressure distribution data captured by a 
wearable insole pressure system show unique patterns according to the categories 
of activities. In addition, the results suggest that the larger window size provides 
better classification results when compared to a smaller window size in recognizing 
overexertion in workers’ activities. With regards to the different types of classifiers 
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and window sizes, participant I had higher accuracies compared to participant II. 
The confusion matrices of the best classifier (i.e., RF) at 2.56s window size of 
participant I and participant II are presented in Fig. 2a and Fig. 2b respectively - the 
sensitivity of each category of activity was more than 90% and 88% respectively. 
This result suggests that there are between-participant variations among the two 
participants although they performed the same activities. Also, the most 
misclassified category of activities was 4.8% in participant I (Fig. 2a) and 8.1% in 
participant II (Fig. 2b).  

Table 2. Classification accuracy (%) for each participant 

Window size ANN DT KNN RF SVM 
0.32s Participant I 65.2 71.6 75.2 80.6 77.5 

Participant II  64.9 71.1 74.8 80.2 77.1 
0.64s Participant I 67.5 73.9 78.8 85.5 80.6 

Participant II  66.9 73.4 78.3 85.3 80.2 
1.28s Participant I 69.4 76.7 83.7 90.8 88.6 

Participant II  68.8 76.4 83.2 90.5 88.1 
2.56s Participant I 72.1 79.6 86.9 94.5 91.7 

Participant II  71.5 79.2 86.1 94.3 91.4 

Fig. 2. Confusion matrix of the RF classifier for each participant at a window size of 2.56s in all 
category of activities  

Table 3 presents the actual and estimated physical intensity, activity duration and 
frequency of each participant in each category of activity. Table 3 illustrates that 
the estimated physical intensity, activity duration and frequency of the first 
participant were within ± 5, ± 2.2%, and < -2, from the actual values respectively. 
Conversely, the estimated physical intensity, activity duration and frequency of the 
second participant were within ± 5, ± 3.8, and < -4, from the actual values 
respectively. These findings suggest that the estimated values in participant I was 
slightly accurate as compared to participant II. Table 4 illustrates the calculation of 

1 90.1% 3.6% 1.5% 4.8% 

2 1.1% 96.6% 1.3% 1.0% 

True class 3 0.3% 3.8% 94.5% 1.4% 

4 4.3% 2.3% 0.6% 92.8% 

1 2 3 4 

Predicted class 

(a) Participant I 

1 88.4% 2.6% 0.9% 8.1% 

2 1.6% 95.6% 1.9% 0.9% 

True class 3 1.4% 3.8% 92.5% 2.3% 

4 4.9% 3.1% 1.8% 90.2% 

1 2 3 4 

Predicted class 

(b) Participant II 
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overexertion related ergonomic risk levels (where these values are based upon the 
risk levels presented in Table 1). All estimated risk levels are similar to actual risk 
levels in each participant. Given above, it is plausible to conclude that the proposed 
approach is feasible to calculate all the actual and the estimated risk levels, which 
are within the same level of risk for each participant.  

Table 3. Actual and estimated physical intensity, activity duration and frequency 

 

Table 4. Calculation of overexertion-related ergonomic risk levels 

 

CONCLUSIONS 

The current study examined the feasibility of using acceleration and foot plantar 
pressure distribution data captured by a wearable insole pressure system for 
automated assessment of construction workers’ activities and overexertion risk 
levels. The results found that the RF classifier (with 2.56s window size) provided the 
best classification accuracy of 94.5% (PI) and 94.3% (PII) and a sensitivity of more 
than 90.1% (PI) and 88.4% (PII) for each category of activities. In addition, all actual 
and the corresponding estimated ergonomic risk levels fall into the same level of 
risk. The study’s findings illustrate that using acceleration and foot plantar pressure 
distribution data measured by a wearable insole pressure system is feasible for 
automated recognition of overexertion-related workers’ activities. Overall, the 
findings could help develop a non-invasive wearable insole pressure system as a 
piece of personal protective equipment for continuous monitoring and activity 
recognition. Such a tool could assist researchers and safety managers in 
understanding the causal relationship between overexertion-related ergonomic 
risk and WMSDs among construction workers. Despite these promising findings, 
the number of study participants was small and all the experiments were conducted 
in a laboratory setting vis-à-vis actual construction site. Future research should 
therefore be undertaken to validate our experimental protocol by using a larger 
sample of experienced construction workers on site to generate a more robust 
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evaluation and recognition of overexertion related workers’ activities and 
ergonomic risk assessment. 
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